The average time for the moon to circle the earth as it circles the sun is 29.53059 days. [aka Synodic month-29.53059 days-29d 12 h 44m 03s]

The first year is 29.53059 times $12=354.367$ days. The first year in days will be 354.

The greatest variation from nominal is plus or minus about 6.5 hours.

The number of days in the moon cycle cannot be less than 29 or greater than 30 .

For the second year there are 3 choices - 353,354 , or 355 days.

When using the 355-day length, 354 plus $355=709$, divided by $29.53059=24.009$.

The 354 plus $354=708$, divided by $29.53059=23.975$ days.

The 354 plus $353=707$, divided by $29.53059=23.941$ days.

The 355 must be chosen because it results in the whole number 24. Because the moon and the earth are 21 days from completing the $3^{\text {rd }}$ year cycle a 13-month year must be chosen. The three possibilities are 383, 384 and 385 days.

When adding the correct number from the previous two years of 709 plus $385=$ 1094, divided by $29.53059=37.046$.

709 plus $384=1093$, divided by $29.53059=37.01246$

709 plus $383=1092$, divided by $29.53059=36.9786$

The 384-length year is the closest number to complete 37 . It is not chosen because it places the end of the month 2 days from completing the yearly cycle.

The 385-day length is chosen because it ends up one day from completing that yearly cycle.

To the number 1094 add the following three possibilities. 353,354 and 355 , totaling 1447,1448 and 1449. Dividing each by $29.53059=49.000036 .1448$ divided by $29.53059=49.0339$. Dividing 1449 by $29.53059=49.0677$.

The closest to the whole number 49 would be the short year of 353 . The problem is that by choosing that short year it reverts back to repeating the same cycle of the first 4 years. Therefore, the next closest number to 49 would be the nominal year of 354 , which is chosen.

1448 plus $353=1801$. 1801 divided by $29.53059=60.9876$. The nominal year would be 1802 divided by $29.53059=61.0214$. 1803 , the long year, when divided by $29.53059=61.0553$, showing that the short year of 353 must be chosen because it comes closest to the whole number 61.61 minus 60.9876 has a difference of .0124, clearly the closest to the number required of 61.

Consulting chart 6 it is found the total number of days in the first nineteen years of the Hebrew calendar is 6939.6939 divided by $29.53059=234.9766$ which results in the travel of the moon matching the solar year. This can be seen by consulting chart 3 and looking at the first 19 years. In the D column is found the number 0 which represents a complete whole day.

Looking at Chart 6 for the complete 13 cycles, the number of days is found as 90216. Dividing 90216 by $29.53059=3055.0016$, which is the closest number with very little carryover.

